Order this information in Print

Order this information on CD-ROM

Download in PDF Format

     

Click here to make tpub.com your Home Page

Page Title: Center of Oscillation
Back | Up | Next

Click here for a printable version

Google


Web
www.tpub.com

Home


   
Information Categories
.... Administration
Advancement
Aerographer
Automotive
Aviation
Combat
Construction
Diving
Draftsman
Engineering
Electronics
Food and Cooking
Math
Medical
Music
Nuclear Fundamentals
Photography
Religion
USMC
   
Products
  Educational CD-ROM's
Printed Manuals
Downloadable Books
   

 

TRUCK SERVICE MANUAL TM 5-4210-230-14&P-1 GENERAL INFORMATION Center of Oscillation If a body oscillates about a horizontal axis which does not pass through its center of gravity, there will be a point on the line drawn from the center of gravity perpendicular to the axis,  the  motion  of  which  will  be  the  same  as  if  the  whole mass were concentrated at that point.  This point is called the center of oscillation. Centrifugal Force When  a  body  revolves  in  a  curved  path,  it  exerts  a force called the centrifugal force upon the arm or cord which restrains it from moving in a straight (tangential) line. Chamfer A bevel, or a corner or edge removed, a relief. Cold Working Changing   the   shape   of   steel   parts   by   compressing, stretching,   bending,   or   twisting,   using   stresses   beyond   the yield  point  and  temperatures  below  the  critical  range.    Cold- drawn  steel  is  finished  by  being  drawn  through  a  die,  while cold-rolled steel is finished between rollers. Contour Outline or profile of an object. Cycle Applied  to  the  internal-combust;  on,  four-cycle  engine, a  cycle  comprises  four  strokes  for  each  piston  (1,  intake;  2, compression;  3,  explosion;  4,  exhaust)  performed  during  two revolutions  of  the  crankshaft.    An  interval  or  period  of  time occupied  by  one  round  or  course  of  events,  recurring  in  the same order in a series. Ductility Ability to withstand stretch without rupture.  Ductility is usually   measured   by   the   percentage   of   elongation,   after rupture  over  a  gauge  length  laid  off  on  a  specimen  before stretching,  or  by  the  reduction  of  area  of  the  original  cross section of a specimen when tested in tension. Dynamic Balance A crankshaft may be in perfect static balance, but if it is mounted    in    bearings    and    revolved    at    high    speed    great vibration   may   develop   which   would   soon   cause   failure   of engine  bearings  and  possibly  cause  breakage  of  the  shaft itself due to fatigue action. Dynamic   unbalance   means   that   the   weight   sums   of diagonally    opposite    portions    are    not    equal.        Take,    for example,  a  pulley  that  is  in  perfect  balance.    Visualize  the pulley  mounted  on  a  shaft  supported  by  bearings.    Attach  a weight to the outer periphery on one edge of the pulley, then attach   an   exact   counterweight   to   the   opposite   side   of   the pulley  on  the  opposite  edge.    The  pulley  continues  to  be  in static balance as evidenced by the fact that it turns freely and stops with the counterweights either up, down, or in any other position; but if the pulley is revolved at a high rate of speed its dynamically unbalanced condition will be very much evidenced   by   the   vibration.      This   dynamic   unbalance   is eliminated in a crankshaft first by determination of the heavy points and next by drilling into these points until the necessary amount of metal and weight has been removed. Elastic Limit The   term   "elastic   limit"   is   unfortunately   used   very loosely  in  general  practice.    In  scientific  usage  the  term  is used  to  denote  the  highest  unit  stress  at  which  material  will completely recover its form after the stress is removed. Endurance In  the  physical  laboratory  this  term  is  used  to  denote the   number   of   cycles   of   repeated   stress   withstood   by   a specimen before failure. Factor of Safety Working stresses should never exceed the elastic limit. They   are   generally   based   on   the   ultimate   strength   of   the material.  The ratio of the ultimate strength of a given material to the allowable working strength called the "Factor of Safety". CTS-2128-L  Page 8 PRINTED IN UNITED STATES OF AMERICA

Privacy Statement - Press Release - Copyright Information. - Contact Us - Support Integrated Publishing

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business